

Fifth Semester B.E. Degree Examination, June/July 2013 Operating Systems

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Explain the different view points that are used to understand the role of an operating system.

 (05 Marks)
 - b. Why is dual mode operation in operating systems required? Explain. (04 Marks)
 - c. Explain the salient features of
 - i) Distributed operating systems
 - ii) Real time operating systems. (06 Marks)
 - d. With examples, explain how system calls handle user applications. (05 Marks)
- 2 a. With illustrations, explain how processes are created and executed in an operating system.

 (04 Marks)
 - b. What is a thread? How does it differ from a process? Differentiate single threaded process and multithreaded process. (06 Marks)
 - c. For the following processes in ready queue, find
 - i) average waiting time
 - ii) average turn around time using the following scheduling algorithms and Gantt chart illustrations:

Process	Burst time (ms)	Arrival time	Priority
A	10	0	3
В	1	1	1(high)
С	2	2	3
D	1	3	4
Е	5	4	2

- i) Shortest job first (preemptive and non -preemptive)
- ii) Priority
- iii) Round robin (q = 2).

(10 Marks)

- 3 a. What is critical section problem? Explain the requirements to be satisfied by any solution to critical section problem. (04 Marks)
 - b. Describe test and set and swap instructions and their use in synchronization of processes.

(05 Marks)

- c. What is a semaphore? How can it solve mutual exclusion problem? Explain bounded buffer problem using semaphore. (06 Marks)
- d. Explain solution to dining philosophers problem using monitors.

4 a. Define deadlock and explain the necessary conditions for deadlock situation to occur.

(05 Marks)

(05Marks)

b. Consider the following snapshort of a computing system:

Process	Allocation			Max			Available					
	A	В	C	D	A	В	C	D	A	В	C	D
P ₀	0	0	1	2	0	0	1	2	1	5	2	0
P ₁	1	0	0	0	1	7	5	0				
P ₂	1	3	5	4	2	3	5	6				iya Y Ngiriy
P ₃	0	6	3	2	0	6	5	2			- 7	10
P ₄	0	0	1	4	0	6	5	6		A. 180		

Answer the following questions using bankers algorithm:

- i) What is the content of matrix need?
- ii) Is the system in a safe state?
- iii) If the request from process P_1 arrives for (0, 4, 2, 0), can the request be granted immediately? Will system be in a safe state? (10 Marks)
- c. Discuss issues related with recovery from deadlocks.

PART – B

- 5 a. Explain internal and external fragmentation problem encountered in a contiguous memory allocation scheme. (04 Marks)
 - b. Consider the following page reference string:

2 3 2 1 5 2 4 5 3 2 5 2.

How many page faults occur in the following replacement algorithms by assuming 3 page frames: i) FIFO ii) LRU iii) Optimal. (09 Marks)

- c. What is virtual memory? How can it be implemented? What are its benefits? (07 Marks)
- 6 a. Explain the different approaches to managing free space on disk storage. (10 Marks)
 - b. What are the different file types? Give their functions along with one example for each type.

 (10 Marks)
- 7 a. Sketch how SSTF disk scheduling occurs for request queue of cylinder numbers: 55, 58, 39, 18, 90, 160, 150, 38, 184 when the head starts at 100. (04 Marks)
 - b. Describe the access matrix model used for protection in operating systems. (08 Marks)
 - c. Discuss the use of passwords as a mechanism for ensuring user authentication in operating system security. (08 Marks)
- 8 a. Explain the different components of a LINUX system. (10 Marks)
 - b. Discuss how memory management is dealt with in LINUX operating system. (10 Marks)

* * * * *